Journal of Rajasthan Academy of Physical Sciences ISSN : 0972-6306; URL : http://raops.org.in Vol.19, No.1&2, January-June, 2020, 1-12

SOME BIANCHI TYPE IX DUST FLUID TILTED COSMOLOGICAL MODELS WITH BULK VISCOSITY IN GENERAL RELATIVITY

Pramila Kumawat

Department of Mathematics, SKIT, Jaipur Email: pramila_maths@yahoo.co.in

Abstract. Bianchi type IX dust fluid tilted cosmological models with bulk viscosity are discussed. To get the deterministic model, we have considered the condition $A = B^n$ where A and B are metric potentials and n is a constant. Physical aspects of the model with and without viscosity are discussed.

Key words: Bianchi type IX, tilted, bulk viscosity

1. Introduction

In recent years, there has been considerable interest in spatially homogeneous, non isotropic cosmological models [24]. These are the so-called Bianchi models, there are two major distinct cases that arise : Orthogonal universe, in which the matter moves orthogonally to the hypersurface of homogeneity and tilted universe, in which the fluid flow vector is not normal to the hypersurfaces of homogeneity [16]. Bradley and Sviestine [8] in the investigation have shown that heat flow is expected for tilted universes. The tilted cosmological models with heat flux have been investigated by number of authors viz. Banerjee and Sanyal [6], Coley [9], Roy and Prasad [23], Roy and Banerjee [22], Bali and Sharma [5], Bali and Meena [4], Bali and Kumawat [1,2,3].

The general anisotropic Bianchi IX model was first investigated by Belinskii and Khalatnikov [7] later by Misner [19] and Doroshkevich et al. [10]. Recently Ghate, Sontakke [14] have investigated Bianchi type IX radiating cosmological model in self creation cosmology.

Dissipative effects including both the bulk and shear relativistic theory of nonequilibrium thermodynamics was developed by Eckart [12] to study the effect of bulk viscosity. Misner [20,21] have investigated the effect of viscosity on the evolution of cosmological models. Heller and Klimek [15] have investigated viscous fluid cosmological models without initial singularity. Recently Dubey et al. [11] have investigated Bianchi type I space time with bulk and shear viscosity and Tiwari and Tiwari [25] have investigated Bianchi type V cosmological model with viscous fluid. In this paper, we have investigated Bianchi type IX dust fluid tilted cosmological models with bulk viscosity. To get the deterministic model, we have considered a condition $A = B^n$ where A and B are metric potentials. To get the solution in terms of cosmic time t, we consider n = 2. The physical and geometrical features of the model in the presence and absence of bulk viscosity are discussed.

2. Field Equations and Solutions

We consider the Bianchi type IX metric in the form

$$ds^{2} = -dt^{2} + A^{2}dx^{2} + B^{2}dy^{2} + (B^{2}sin^{2}y + A^{2}cos^{2}y)dz^{2} - 2A^{2}cosy dx dz$$
(1)

Energy momentum tensor for heat conduction is given by Ellis [13] and for bulk viscosity given by Landau and Lifshitz [17], is given by

$$T_{i}^{j} = (\in +p) v_{i} v^{j} + p g_{i}^{j} + q_{i} v^{j} + v_{i} q^{j} - \zeta \theta (g_{i}^{j} + v_{i} v^{j})$$
⁽²⁾

together with

$$g_{ij}v^iv^j = -1 \tag{3}$$

$$\mathbf{q}_{i} \mathbf{v}^{i} = \mathbf{0} \tag{4}$$

$$q_i q^i > 0 \tag{5}$$

The fluid flow vector v^i has the components $\left(\frac{\sinh\lambda}{A}, 0, 0, \cosh\lambda\right)$ satisfying (3), λ being the tilt angle.

The Einstein's field equation

$$R_{i}^{j} - \frac{1}{2}R g_{i}^{j} = -8\pi T_{i}^{j}$$
(6)

for the metric (1) leads to

$$\frac{2B_{44}}{B} + \frac{B_4^2}{B^2} + \frac{1}{B^2} - \frac{3}{4} \frac{A^2}{B^4} = -8\pi [(\in +p)\sinh^2\lambda + p + 2Aq^1\sinh\lambda - K\cosh^2\lambda]$$
(7)

$$\frac{A_4B_4}{AB} + \frac{B_{44}}{B} + \frac{A_{44}}{A} + \frac{A^2}{4B^4} = -8\pi (p - K)$$
(8)

$$\frac{2A_4B_4}{AB} - \frac{A^2}{4B^4} + \frac{B_4^2}{B^2} + \frac{1}{B^2} = -8\pi[-(\epsilon + p)\cosh^2\lambda + p - 2Aq^1\sinh\lambda + K\sinh^2\lambda]$$
(9)

$$(\in +p) \operatorname{Asinh} \cosh \lambda + A^2 q^1 \frac{\cosh 2\lambda}{\cosh \lambda} - K \operatorname{Asinh} \lambda \cosh \lambda = 0$$
(10)

where $\zeta \theta = K$

We assume that the universe is filled with dust fluid distribution which leads to

$$\mathbf{p} = \mathbf{0} \tag{11}$$

also assume that

$$\mathbf{A} = \mathbf{B}^{\mathbf{n}} \tag{12}$$

when n is the constant.

Using (8) and (11), we have

$$\frac{A_4B_4}{AB} + \frac{B_{44}}{B} + \frac{A_{44}}{A} + \frac{A^2}{4B^4} = 8\pi K$$
(13)

Equations (12) and (13) lead to

$$(n+1)\frac{B_{44}}{B} + n^2 \frac{B_4^2}{B^2} = 8\pi K - \frac{B^{2n-4}}{4}$$
(14)

If we take n=2

Equation (14) becomes,

$$2B_{44} + \frac{8}{3B}B_4^2 = (\frac{32\pi K - 1}{6})B$$
(16)

We assume that

$$\mathbf{B}_4 = \mathbf{f} \ (\mathbf{B}) \tag{17}$$

Thus $\mathbf{B}_{44} = \mathbf{f} \mathbf{f}'$

Using equations (16) and (17), we have

$$\frac{df^2}{dB} + \frac{8}{3}\frac{f^2}{B} = \left(\frac{32\pi K - 1}{6}\right)B$$
(18)

On solving equation (18), we have

$$f^{2} = B_{4} = \left(\frac{32\pi K - 1}{28}\right)B^{2} + NB^{-8/3}$$

(15)

$$or \frac{B^{4/3}}{\sqrt{\alpha B^{14/3} + N}} \, dB = dt \tag{19}$$

Where N is a constant of integration and $\alpha = \left(\frac{32\pi K - 1}{28}\right)$

On solving equation (19), we have

$$B = \left\{ \sqrt{\frac{N}{\alpha}} \sinh\left(\frac{7}{3}\sqrt{\alpha}t\right) \right\}^{3/7}$$
(20)

Therefore, the metric (1) takes the form

$$ds^{2} = -dt^{2} + \left\{ \sqrt{\frac{N}{\alpha}} \sinh\left(\frac{7}{3}\sqrt{\alpha}t\right) \right\}^{12/7} dx^{2} + \left\{ \sqrt{\frac{N}{\alpha}} \sinh\left(\frac{7}{3}\sqrt{\alpha}t\right) \right\}^{6/7} dy^{2} + \left[\left\{ \sqrt{\frac{N}{\alpha}} \sinh\left(\frac{7}{3}\sqrt{\alpha}t\right) \right\}^{6/7} \sin^{2} y + \left\{ \sqrt{\frac{N}{\alpha}} \sinh\left(\frac{7}{3}\sqrt{\alpha}t\right) \right\}^{12/7} \cos^{2} y \right] dz^{2} - 2 \left\{ \sqrt{\frac{N}{\alpha}} \sinh\left(\frac{7}{3}\sqrt{\alpha}t\right) \right\}^{12/7} \cos y dx dz$$

$$(21)$$

Using the transformations

$$\left\{\sqrt{\frac{N}{\alpha}}\sinh\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\} = \frac{a\sin\sqrt{K}\tau}{\sqrt{K}}$$
(22)

And
$$\alpha = \left(\frac{32\pi K - 1}{28}\right) = lK$$
 (23)

Where l is the constant.

The metric (21) in the absence of bulk viscosity reduces to the form

$$ds^{2} = -\frac{9a^{2}}{49N}d\tau^{2} + (a\tau)^{12/7}dx^{2} + (a\tau)^{6/7}dy^{2} + [(a\tau)^{6/7}\sin^{2}y + (a\tau)^{12/7}\cos^{2}y]dz^{2} - 2(a\tau)^{12/7}\cos ydxdz$$
(24)

3. Some Physical and Geometrical Features

The matter density (\in), the tilt angle (λ), the expansion (θ), the flow vector (v^i) and heat conduction vector (q^i) for the metric (21) are given by

$$8\pi \in = \frac{10}{3}\alpha \coth^2\left(\frac{7}{3}\sqrt{\alpha}t\right) + 2\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{6/7} - \left(\frac{7+16\pi K}{6}\right)$$
(25)

$$\cosh^{2} \lambda = \frac{\left[(32\pi K + 1) - 20\alpha \coth^{2} \left(\frac{7}{3} \sqrt{\alpha} t \right) - 4 \left\{ \sqrt{\frac{\alpha}{N}} \cos ech \left(\frac{7}{3} \sqrt{\alpha} t \right) \right\}^{6/7} \right]}{\left[\left(64\pi K - 8 \right) - 80 \operatorname{conth}^{2} \left(\frac{7}{\sqrt{\alpha} t} \right) \right]}$$
(26)

$$\sinh^{2} \lambda = \frac{\left[\left(\frac{(32\pi K+11)}{3}\right) + \frac{20}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha t}\right) - 4\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha t}\right)\right\}^{6/7}\right]}{\left[\left(\frac{64\pi K-8}{3}\right) - \frac{80}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha t}\right)\right]}$$
(27)

$$\theta = \frac{\left[\left(\frac{64\pi K - 8}{3}\right) - \frac{80}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha t}\right)\right]}{\left[\left(\frac{35}{3}\alpha \csc ech^{2}\left(\frac{7}{3}\sqrt{\alpha t}\right) + \left\{\sqrt{\frac{\alpha}{N}}\csc ech\left(\frac{7}{3}\sqrt{\alpha t}\right)\right\}^{6/7}\right] + \left[\left(32\pi K + 1\right) - 20\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha t}\right) - 4\left\{\sqrt{\frac{\alpha}{N}}\csc ech\left(\frac{7}{3}\sqrt{\alpha t}\right)\right\}^{6/7}\right]\right]}{\left[\left(\frac{352\pi K - 29}{9}\right) - \frac{380}{9}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha t}\right)\right]}$$
(28)
$$\frac{2\left[\left(32\pi K + 1\right) - 20\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha t}\right) - 4\left\{\sqrt{\frac{\alpha}{N}}\csc ech\left(\frac{7}{3}\sqrt{\alpha t}\right)\right\}^{6/7}\right]^{1/2}}{\left[\left(\frac{64\pi K - 8}{3}\right) - \frac{80}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha t}\right)\right]^{3/2}}$$

$$\mathbf{v}^{1} = \frac{\left[\left(\frac{32\pi K + 11}{3}\right) + \frac{20}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 4\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{6/7}\right]^{1/2}}{\left[\left(\frac{64\pi K - 8}{3}\right) - \frac{80}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]^{1/2}\left\{\sqrt{\frac{N}{\alpha}}\sinh\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{6/7}}$$
(29)

$$\mathbf{v}^{4} = \frac{\left[(32\pi K + 1) - 20\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 4\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]^{1/2}}{\left[\left(\frac{64\pi K + 7}{6}\right) - \frac{10}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 2\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}$$
(30)
$$\frac{1}{8\pi} \left[\left(\frac{(32\pi K + 11)}{3}\right) + \frac{20}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 2\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}{\left[\left(\frac{(126\pi K + 14)}{3}\right) - \frac{40}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 4\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}$$
(31)
$$\frac{\left[\left(\frac{64\pi K - 8}{3}\right) - \frac{80}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 8\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}{18\pi \left[\left(\frac{(64\pi K + 7)}{6}\right) - \frac{10}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 2\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}$$
(31)
$$\frac{\left[\left(\frac{(32\pi K + 11)}{3}\right) + \frac{20}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 2\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}{\left[\left(\frac{(32\pi K + 11)}{3}\right) + \frac{20}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 4\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}$$
(32)
$$q^{4} = \frac{\left[\left(\frac{(32\pi K + 11)}{3}\right) - 20\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 4\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}{\left[\left(\frac{(126\pi K + 14)}{3}\right) - \frac{40}{3}\alpha \coth^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right) - 8\left\{\sqrt{\frac{\alpha}{N}}\cos ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{67} \right]}$$
(32)

The components of shear tensor (σ_{ij}) are given by

$$\sigma_{11} = \frac{2\sqrt{\alpha} \operatorname{coth}\left(\frac{7}{3}\sqrt{\alpha}t\right) \left\{\sqrt{\frac{N}{\alpha}} \sinh\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{1/27}}{\left[\left(32\pi K+1\right)-20\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)-4\left\{\sqrt{\frac{\alpha}{N}} \operatorname{cos} ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{6/7}\right]^{1/2}}\right]^{6/7}} \left[\left[\left(\frac{32\pi K+1\right)-20\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)-4\left\{\sqrt{\frac{\alpha}{N}} \operatorname{cos} ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{6/7}\right]}{\left[\left(\frac{832\pi K-44}{9}\right)-\frac{800}{9}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]+4\left[\left(\frac{64\pi K-8}{3}\right)-\frac{80}{3}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]\right]}\right]^{6/7}}\right]$$

$$\sigma_{11} = \frac{\left[\left(\frac{35}{3}\alpha \operatorname{cos} ech^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)+\left\{\sqrt{\frac{\alpha}{N}} \operatorname{cos} ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{6/7}\right]}{3\left[\left(\frac{64\pi K-8}{3}\right)-\frac{80}{3}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]^{6/7}}\right]^{1/2}}{\left[\left(\frac{32\pi K+11}{3}\right)+\frac{20}{3}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)-4\left\{\sqrt{\frac{\alpha}{N}} \operatorname{cos} ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{6/7}\right]}{\left[\left(\frac{32\pi K+11}{9}\right)-20\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)-4\left\{\sqrt{\frac{\alpha}{N}} \operatorname{cos} ech\left(\frac{7}{3}\sqrt{\alpha}t\right)\right\}^{6/7}\right]}{\left[\left(\frac{832\pi K-44}{9}\right)-\frac{800}{9}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]+4\left[\left(\frac{64\pi K-8}{3}\right)-\frac{80}{3}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]}{3\left[\left(\frac{64\pi K-8}{9}\right)-\frac{800}{9}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]+4\left[\left(\frac{64\pi K-8}{3}\right)-\frac{80}{3}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]}{3\left[\left(\frac{64\pi K-8}{3}\right)-\frac{80}{3}\alpha \operatorname{coth}^{2}\left(\frac{7}{3}\sqrt{\alpha}t\right)\right]}\right]^{5/2}}$$

$$(34)$$

The trace free condition for σ_{ij} is given by

$$\sigma_{ij} \mathbf{v}^i = 0$$

This leads to

Pramila Kumawat

$$\sigma_{11} \mathbf{v}^1 + \sigma_{14} \mathbf{v}^4 = 0 \tag{35}$$

Which is satisfied for given values of $\sigma_{11}, \sigma_{14}, v^1$ and v^4

In absence of viscosity, the above mentioned quantities lead to

$$8\pi \in = \frac{\left[2(a\tau)^{8/7} - \left(\frac{15}{12}\right)(a\tau)^2 + \frac{10}{3}N\right]}{(a\tau)^2}$$
(36)

$$\cosh^{2} \lambda = \frac{\left[4(a\tau)^{8/7} - 2(a\tau)^{2} + 20N\right]}{\left[2(a\tau)^{2} + \frac{80}{3}N\right]}$$
(37)

$$\sinh^{2} \lambda = \frac{\left[4(a\tau)^{8/7} - 4(a\tau)^{2} - \frac{20}{3}N\right]}{\left[2(a\tau)^{2} + \frac{80}{3}N\right]}$$
(38)

$$\theta = \frac{4\sqrt{N}\left[\left[4(a\tau)^{8/7} - 2(a\tau)^2 + 20N\left[2(a\tau)^2 + \frac{380}{9}N\right] - \left[2(a\tau)^2 + \frac{80}{3}N\right]\left[(a\tau)^{8/7} + \frac{35}{3}N\right]\right]}{\left[2(a\tau)^2 + \frac{80}{3}N\right]^{3/2}\left[4(a\tau)^{8/7} - 2(a\tau)^2 + 20N\right]^{1/2}(a\tau)}$$
(39)

$$\mathbf{v}^{1} = \frac{\left[\frac{4(a\tau)^{8/7} - 4(a\tau)^{2} - \frac{20}{3}N\right]^{7}}{(a\tau)^{6/7} \left[2(a\tau)^{2} + \frac{80}{3}N\right]^{1/2}}$$
(40)

$$v^{4} = \frac{\left[4(a\tau)^{8/7} - 2(a\tau)^{2} + 20N\right]^{1/2}}{\left[2(a\tau)^{2} + \frac{80}{3}N\right]^{1/2}}$$
(41)

$$q^{1} = \frac{\frac{1}{8\pi} \left[\frac{3}{2} (a\tau)^{2} - 2(a\tau)^{8/7} - \frac{10}{3} N \right] \left[4(a\tau)^{8/7} - 4(a\tau)^{2} - \frac{20}{3} N \right]^{1/2}}{\left(42 \right)^{20/7} \left[8(a\tau)^{8/7} - 6(a\tau)^{2} + \frac{40}{3} N \right] \left[2(a\tau)^{2} + \frac{80}{3} N \right]^{1/2}}$$
(42)

$$\sigma_{14} = \frac{\frac{1}{8\pi} \left[\frac{3}{2} (a\tau)^2 - 2(a\tau)^{8/7} - \frac{10}{3} N \right] \left[4(a\tau)^{8/7} - 4(a\tau)^2 - \frac{20}{3} N \right]}{(a\tau)^{2} \left[8(a\tau)^{8/7} - 2(a\tau)^2 + 20N \right]^{1/2}}$$
(43)

$$\sigma_{11} = \frac{2\sqrt{N} (a\tau)^{5/7} \left[4(a\tau)^{8/7} - 2(a\tau)^2 + \frac{40}{3} N \right] \left[2(a\tau)^2 + \frac{80}{3} N \right]^{1/2}}{-4 \left[2(a\tau)^2 + \frac{80}{3} N \right] \left[(a\tau)^{8/7} + \frac{35}{3} N \right]}$$
(44)

$$\sigma_{14} = -\frac{2\sqrt{N} \left[4(a\tau)^{8/7} - 4(a\tau)^2 - \frac{20}{3} N \right]^{1/2} \left[\left[4(a\tau)^{8/7} - 2(a\tau)^2 + 20N \left[2(a\tau)^2 + \frac{800}{9} N \right] \right]}{-4 \left[2(a\tau)^2 + \frac{80}{3} N \right] \left[(a\tau)^{8/7} + \frac{35}{3} N \right]} \right]}$$
(45)

Thus $\sigma_{11}v^1 + \sigma_{14}v^4 = 0$

4. Discussion

In presence of viscosity, the matter density $(\in) \to \infty$ when $t \to 0$ where $(32\pi K - 1) > 0$ and N > 0. The model (21) has point type singularity at t = 0 (MacCallum [18]) and the model (21) starts with a big bang at t = 0.

In absence of viscosity, the matter density $(\in) \to \infty$ when $(\tau) \to 0$. The model (24) has point type singularity at $\tau = 0$ (MacCallum [18]). The model (24) starts with a big bang at $\tau = 0$ and the expansion in the model decreases as time increases.

Acknowledgement: I am thankful to the Referee for useful discussion and suggestions.

5. References

- [1] Bali, R. and Kumawat, P. (2008). Bulk viscous L.R.S. Bianchi type V tilted stiff fluid cosmological model in general relativity, *Phys. Lett. B.* **665**, 332-337.
- [2] Bali, R. and Kumawat, P. (2008). Bianchi type I magnetized tilted imperfect barotropic fluid cosmological model in general relativity, *Gravi. and Cosmology*, **14**, 347-354.

(46)

- [3] Bali, R. and Kumawat, P. (2009). Bianchi type IX tilted cosmological model for barotropic perfect fluid distribution in general relativity, *Proc. Nat. Acad. of Sci., Sect. A*, **79**, II, 215-220.
- [4] Bali, R. and Meena, B.L. (2004). Conformally flat tilted Bianchi type V cosmological models in general relativity, *Pramana*, **62**, 1007-1014.
- [5] Bali, R. and Sharma, K. (2004). Tilted Bianchi type I cosmological models for barotropic perfect fluid in General Relativity, *Astrophys. and Space-Sci.* **293**, 367-380.
- [6] Banerjee, A. and Sanyal, A.K. (1988). Irrotational Bianchi V viscous fluid cosmology with heat flux, *Gen. Relativ. Gravi.* **20**,103-113.
- [7] Belinskii, A. and Khalatnikov, I.M. (1969). On the nature of the singularities in the general solutions of the gravitational equations, *JETP*, **29**, 911-917.
- [8] Bradley, J.M. and Sviestins, E. (1984).Some rotating, time-dependent Bianchi type VIII cosmologies with heat flow, *Gen. Relativ. Gravi.* **16**, 1119-1133.
- [9] Coley, A.A. (1990). Bianchi V imperfect fluid cosmology, *Gen. Relativ. Gravi.* **22**, 3-18.
- [10] Doroshkevich, A.G., Lukash, V.N. and Novikov, I.D. (1971). Impossibility of Mixing in the Bianchi type IX cosmological model, *JETP*, **33**, 649-651.
- [11] Dubey, R.K., Dwivedi, S.K. and Saini, A. (2016). Bianchi type I viscous fluid cosmological models with cosmological term (t), *Int. J. of Scientific Research*, **5**, issue III, 225-236.
- [12] Eckart, C. (1940). The Thermodynamics of irreversible processes III Relativistic theory of the simple fluid, *Phys. Rev.* **58**,919-923.
- [13] Ellis, G.F.R. (1971). *Gen. Relativity and Cosmology* (ed. R.K. Sachs), Acad. Press, New York, p.116
- [14] Ghate, H.R. and Sontakke, A. (2014). Bianchi type IX radiating cosmological model in self creation cosmology, *Int. J. of innovative research in Sc., Engg. and Tech.* **3**, issue 6, 13820-13825.
- [15] Heller, M. and Klimek, Z. (1975). Viscous universes without initial singularity, *Astrophys. space Sci.* **33**, L37-L39.
- [16] King, A.R. and Ellis, G.F.R. (1973). Tilted homogeneous cosmological models, *Commun. Math. Phys.***31**, 209-242.
- [17] Landau, L.D. and Lifshitz, E.M. (1963). *Fluid Mechanics*, Pergamon Press, 6, 505.
- [18] MacCallum, M.A.H. (1971). A class of homogeneous cosmological models III Asymptotic behaviour, *Comm. Math. Phys.* **20**, 57-84.
- [19] Misner, C.W. (1969). Mixmaster universe, *Phys. Rev. Lett.* 22, 1071-1073.

- [20] Misner, C.W. (1967). Transport processes in the primordial fireball, *Nature*, **214**, 40-41.
- [21] Misner, C.W. (1968). The isotropy of the universe, *Astrophys. J.* 151, 431-457.
- [22] Roy, S.R. and Banerjee, S.K. (1996). Bianchi VI_0 electric type cosmological models in General Relativity with stiff fluid and heat conduction, *Gen. Relativ. Grav.* **28**, 27-33.
- [23] Roy, S.R. and Prasad, A. (1994). Some L.R.S. Bianchi type V cosmological models of local embedding class one, *Gen. Relativ. Grav.* **26**, 939-950.
- [24] Ryan, M.P. and Shepley, L.C. (1975). *Homogeneous Relativistic Cosmologies*, (Princeton University Press, Princeton, New Jersey).
- [25] Tiwari, L.K., and. Tiwari, R.K. (2017). Bianchi type V cosmological models with viscous fluid and varying Λ, *Prespace time Journal*, **8**, 1509-1520.